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STATISTICAL PROPERTIES OF BURSTS OF TURBULENT FLUCTUATIONS 

A. A. Praskovskii UDC 532.517.4 

The energy spectra, probability distribution functions (DFs), and the associated moment 
and scale numerical characteristics are used to describe turbulent fluctuations at a certain 
point of a flow in statistical fluid mechanics. However, these functions do not describe the 
instantaneous disturbances generated in turbulent flows; these disturbances are particularly 
important in a number of engineering applications. 

An alternative approach to the investigation of turbulence is possible, consisting in 
the analysis of bursts, i.e., events where the fluctuation component of the flow velocity 
exceeds a certain prescribed level. Apart from practical applications, the burst characteris- 
tics determined by the joint distribution of the probabilities of the fluctuation velocity 
of the flow and its derivative are important from the standpoint of methods being developed 
at the present time for the description of turbulent flows on the basis of the DF equations. 
This kind of approach can be used in studying the laminar-to-turbulent flow transition, which 
is characterized by the inception of randomly distributed local regions with large gradients 
of the parameters. 

The theory of bursts of stochastic processes, which was formulated primarily for radio- 
physical applications (see, e.g., [I]), is cur~_~ ~ly in a state of continuing development. 
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The existing theoretical results are inadequate for the quantitative description of instan- 
taneous disturbances in turbulent flows, but they are useful for the qualitative analysis 
of the problems in question. Scattered experimental data on the parameters of bursts in tur- 
bulent flows may be found in [2-4]. 

The objective of the present study is to determine the functional form of the burst 
characteristics and to deduce their dependence on the standard parameters of flow fluctuations 
(rms level, integral scale, etc.) over a broad range of variation of the turbulence Reynolds 
number. 

Let u(t) (t is the time) be the longitudinal component of the fluctuation velocity of 
the flow. Figure 1 shows a realization of the process u(t) of duration t r. We define a 
burst as an excess of the signal u(t) above a prescribed level C. The durations Ti, the 
amplitudes Ai, and the number of bursts N (for the realization shown in Fig. i, N = 3) are 
random variables. From the burst characteristics Ti, A i (i = i, 2, ..., N) wecan form theDF 
~(~) (wher e ~ = T, A) and also determine the average number of bursts per unit time n = 
N/tr, the average values m~ = <%>, and the rms values a~ = ~<(~ ~ m~)a> of the durations 
and amplltudes (the angle brackets denote averaging over the sample or the time t). 

We have determined the burst characteristics for seven realizations. The first four 
realizations represented fluctuations of the longitudinal component of the flow velocity in 
the symmetry plane of the wake of a circular cylinder of diameter d = 36 mm set up at the 
exit orifice of the nozzle of a wind tunnel with a diameter of 1200 mm. The values of the 
exit velocities Uo of the air from the nozzle, the Reynolds number Re = Uod/v, and the 
average flow velocities U at the measurement point are given in Table i. The measurements 
were perfom=ed using a Disa Elektronik (Denmark) 55A01 constant-temperature hot-wire anemo- 
meter with a 55A22 sensor (platinized tungsten wire with a diameter of 5 ~m and length of 
! mm). The fifth and sixth realizations were fluctuations of the total pressure p(t) in 
the exit section of an air-intake model. It is readily shown (see, e.g., [5]) that if fluc- 
tuations of the static pressure and density are neglected, then for low intensities of the 
velocity fluctuations the quantities p(t) and u(t) at a fixed point of the flow are joined 
by the linear relation p(t) = pUu(t), where p is the density of the gas. The mass-flow 
average (bulk) values of the flow velocities Uo in the model duct, the Reynolds numbers Re = 
UoD/v (D is the diameter of the duct in the exit section), and the average velocities U at 
the measurement point are given in Table i. The total-pressure fluctuations were measured 
with a DMI-II-0.6 sensor connected to a 4-ANCh-22 amplifier. The seventh realization was 
the output signal of a G2-37 normal white-noise generator after transmission through an RC 
low-pass filter (R = 3 k~, C = 1 >F). Realizations 1-7 were recorded on an FM magnetograph 
(MR 800 A Labcorder) in the frequency range 0-5 kHz. The duration of each frame of the rec- 
ords was 45 sec for the velocity fluctuations, 30 sec for the pressure fluctuations, and i 
min for the normal noise. 

The signals were processed on a digital computer. Each realization was first analyzed 
in the frequency range 0-5 kHz at the interrogation frequency of the analog-to-digital con- 
verter fo = 20 kHz. The rms level u' of the velocity fluctuations and the integral tlme 
scale T were determined, and the upper frequency limit fu of energy-carrying frequencies was 
calculated from T in accordance with the condition 2~Tf u = 5 (the number 5 is largely an 
arbitrary choice insofar as the concept of "energy-carrying frequencies" is not strictly 
defined; according to published data [6], approximately 80% of the energy of turbulence is 
concentrated in the frequency range up to fu = 5/2~T). The values of the intensities of the 
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TABLE i 

Realization 
No. 

Uo ~ Ill / SeC 

Re. t0=~ 
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Points in Figs. 
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i,50 

~60 

--i,32 
--4,25 

4,i i  

45 

5i,5 
i,24 

42,9 
9,32 
2,71 
3,i0 

3i5 

--6,26 
--i8,2 

i ,97 
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4t 
9,22 

O0 
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0,395 
6,35 

O0 

29,6 
iO,t 
0,252 

32 

3,02 

25O 

--0,t8 
1,08 
2,68 
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velocity fluctuations, the integral time scales, the turbulence Reynolds numbers Re T = uTL/~ 
(L = TU), and the frequency limits fu are given in Table i. 

The signals were subsequently processed in the frequency range from i Hz to f using 
filters with a steep response: 48 dB/octave. At the energy-carrying frequencies fUr realiza- 
tions 1-7 we calculated the rms levels ~ = /<u2(t)>, the skewness parameters S = <u3(t)>/~ 3, 
the kurtoses E = <u~(t)>/~--3, theDFs, andthe quantities % = /2<u2(t)>/<(3u/3t)2> (since 
the analysis was carried out at the energy-carrying frequencies obtained in the experiments, 
the characteristic times % of the processes should not be identified with the time micro- 
scales of Taylor). The values of the parameters S, E, %, along with the signal-to-noise 
ratio (SNR) of the instruments at the output of the magnetograph in the frequency range from 
i Hz to fu are given in Table i. 

The burst characteristics for each value of the level C were calculated from segments 
of realizations of sufficient length to ensure a sample size N = 512. The relative statis- 
tical errors of determination of the quantities m~ and ~ in this case were equal to 4.4% 
and 6.3% respectively. A special analysis has shown that for the correct determination of 
the functions ~(q.) the interrogation frequency must satisfy the condition fom T ~ 50. In 
the reported experiments the frequency fo was varied in accordance with this level from 5 to 
800 kHz. 

The experiments showed that for realizations 1-6 the DFs of the flow fluctuations are 

almost normal. Clearly, the DF for realization 7 is Gaussian. It is reasonable to expect, 
therefore, that the theoretical results for normal stochastic processes will be applicable 
to the investigated realizations. 

The results of the measurements lead to the conclusion that the DFs of the durations 
of the bursts of the flow velocity fluctuations for c = C/o ~ 1.5 obey a log-normal law. 
As an illustration, Fig. 2 shows some of the experimental data in probabilistic scale. The 
graphs are plotted as follows. The abscissas (suitably shifted) represent the values of the 

2 
quantity z = (x- mx)/~ x, where x = in (z/%), m x = <xi >, ~x = <(xi- mx )2>, and the ordinates 
represent the linear scale of the numbers z and the corresponding values of the probability 

integral 

(~o (z) = ~ e--Y dt. ( t )  

In Fig. 2 the solid lines represent relation (I). The numerals designate the following 
measurement conditions: i) c = 2.5, z = y; 2) c = 2.0, z = y -- i; 3) c = 1.5, z = y -- 2; 4) 
c = 1.0, z = y -- 3; 5) c = 0.5, z = y -- 4; 6) c = 0, z = y -- 5; 7) c = O, z = y -- 6. 

The nomenclature for the different realizations are given in Table i. Significant devi- 
ations of the burst-duration DFs from the law (i) for realizations 1-6 appear for c ~2. For 
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normal noise, however, the burst-duration DFs, even for c = 0, are log-normal (see Fig. 2), 
A log-normal distribution of the durations of the bursts of turbulent fluctuations at the 
energy-carrying frequencies has been recorded in a study [3] of the flow velocity fluctua- 
tions in a boundary layer, in a planar jet, and behind grids for c = 0, and also of the con- 
centration fluctuations of a passive admixture in entrained and submerged circular jets for 
small values of c (see [2]). This effect is not a general property of normal stochastic pro- 
cesses, but is associated with the physical mechanism of the evolution of developed turbulence 
and admits the following qualitative interpretation. It has been shown [7] that a log-normal 
distribution corresponds asymptotically to the size distribution of particles obtained as a 

result of successive independent comminutions (the length scale I of instantaneous turbulent 
formations is linearly related to % by the equation I : TU). The log-normal distribution of 
the burst durations confirms the fact that the physical model of the cascade process of for- 
mation of increasingly smaller turbulent eddies at the energy-carrying frequencies is a pro- 
cess of successive independent comminution (breakup) of large eddies (see, e.g., [8]). 

It is generally known (see, e.g., [I]) that for large values of c the DFs of the dura- 
tions of bursts of normal stochastic processes tend to a Rayleigh law, which in our notation 
can be written in the form 

@ x ( x ) = l - - e x p  - - $  . (2)  

The measurements show that relation (2) is applicable for c ~2, and the correspondence 

of the experimental data to relation (2) improves with increasing value of c. To illustrate 
this assertion Fig. 3 shows in probabilistic scale some results of measurements of the DFs 

of burst durations at high intensity levels. The solid lines represent relation (2). The 
numerals represent the following measurement conditions: i) c = 1.9, T/m% = y; 2) c = 2.1, 

T/m T = y -- 0.5; 3) c = 2.3, T/m T = y -- 1; 4) c = 2.5, T/m T = y -- 1.5. 

We now discuss the DFs of the burst amplitudes. It is well known (see, e.g., [i]) that 

the maxima of wideband normal stochastic processes have a normal distribution. Although the 
amplitudes of the disturbances are not identical with the maxima involved in the theory of 

bursts, it is reasonable to expect that the quantities A i representing the discrete values 
of a normal random function will also have a Gaussian distribution function. For the abso- 
lute values of the amplitudes (considering c~0) we write the normal DF in the form 

\ ~ m_, V 
(3) 

The results show~ in Fig. 4 in probabilistic scale from measurements of the DFs of the 
burst amplitudes are well described by expression (3) for 0~c -~2.5. The solid lines rep- 
resent relation (3). The numerals correspond to the following measurement conditions: i) 

c = 2.5, A/m A = y; 2) c = 2.0, A/m A = y -- i; 3) c = 1.5, A/m A = y -- 2; 4) c = 1.0, A/m A = 
y -- 3; 5) c = 0.5, A/m A = y -- 4; 6) c = 0, A/m A = y -- 5; 7) c = 1.5, A/m h = y-- 6. A normal 
DF of the amplitudes oE bursts of flow velocity fluctuations has been obtained [3] in a 
boundary layer, in a planar jet, and behind grids for c = 0. The correspondence of the DFs 
of the burst amplitudes of normal noise to the distribution (3) is a natural result. 
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The universality observed in the reported experiments between the DFs of the durations 
and amplitudes of bursts of the flow velocity fluctuations at the energy-carrying frequencies 
greatly simplifies the determination of the dependence of the burst parameters on the standard 
characteristics of turbulence. For this purpose it is sufficient to relate the governing 
moments of the resulting distributions to the standard parameters of the fluctuations at 
various levels. 

The log-normal law describing the DFs of the burst durations for c ~ 1.5 is determined 
by the quantities m x and a x. It is well known (see, e.g., [9]) that for stochastic processes 
with a log-normal probability distribution the quantities m x and a x are related one-to-one 
with the parameters m r and o T. In our notation this relationship has the form 

m~l% 2 in[i+(~2 i (4) 
~ = in i f  ~ + ( o ~ / ~ ) . ,  o~ = k " W  J. 

In Fig. 5 the results of measurements of the average burst duration are compared with 
the theoretical relation for normal stochastic processes (see [i]): 

m~l~ = l r ~  [ i  - -  ~o (c)] e(~i~> <~. (5) 

Equation (5) well describes the experimental data for c~ 2.1. 

The theoretical relationship of the rms levels of the burst durations to the turbulence 
level is not to be found in the literature. The measurement data sh6wn in Fig. 5 for c ~2.1 
can be approximated by an expression of the form 

~Ik =~e-~ c, (6) 

where a and B are empirical coefficients. The values ~ = 2.48 and B = 0.868 have been de- 
termined by the least-squares method for c ~2.1 from the experimental data given in Fig. 5 
for realizations 1-6. It is seen that relation (6) is inapplicable for normal noise. 
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The results of calculations of the average values m x and rms values a x of the logarithms 
of the burst durations from relations (4)-(6) for realizations 1-6 are in satisfactory agree- 
ment with the measurement data for c~1.5 (see Fig. 5), thereby supporting the conclusion 
of a log-normal distribution of the durations of bursts of turbulent fluctuations at low le- 
vels. The following approximate estimates have been obtained [3] for the investigated turbu- 
lent flows for c = 0: <ig (m/mm)> ~ - - 0 . 2 6 ,  /<(ig(m/m~) ~ <Ig (T/m~)>)2> = 0.37. From re- 
lations (4)-(6) for c = 0 we obtain for the values of these parameters --0.18 and 0.39 re- 
spectively, which are in good agreement with the results of [3] and indicate that relations 
(5) and (6) clearly have a very general nature. 

At high turbulence levels the distribution of the burst durations obeys the Rayleigh 
law (2), for which Om/mT = /~7~-- i. For c >> i, restricting the series expansion of the 
function ~o(C) to the first two terms, from (5) we obtain mT/l = /~7~, so that 

~,tx = ( V4---:~)/c. (7) 

The r e s u l t s  o f  c a l c u l a t i o n s  o f  a T a c c o r d i n g  t o  (7) a r e  i n  s a t i s f a c t o r y  a g r e e m e n t  w i t h  t h e  
m e a s u r e m e n t  d a t a  f o r  c ~  1 . 8  f o r  a l l  o f  t h e  i n v e s t i g a t e d  r e a l i z a t i o n s  ( s e e  F i g .  5 ) .  U s i n g  
t h e  f a m i l i a r  r u l e s  f o r  t h e  c h a n g e  of  v a r i a b l e s  i n  DFs,  f rom (2) we o b t a i n  e s t i m a t e s  of  m and 

x 
~x f o r  l a r g e  c :  

2 ~ in 2~, 
�9 (8) 

where Ce = 0.5772... is the Euler constant. The satisfactory correspondence of the results 
of calculations of the parameters m x and a x according to (8) with the measurement data for 
c~2 (see Fig. 5) confirms the validity of the distribution (2) for high levels in the case 
of realizations 1-7. 

The results of measurements of the average number of bursts per unit time, shown in 
Fig. 6, exhibit good agreement with the theoretical relation for normal stochastic processes 
(see [i]): 

n% = ~ - ~ n  e ~ (9) 

The measured values reported in [4] for the average zero-crossing frequency of the fluctuation 
component of the flow velocity in a circular jet, in a boundary layer, and behind grids show 
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that for c = 0 the group nl is practically independent of the type of flow or the value of 
Re T and is approximately equal to 0.23-0.29, consistent with the experimental data shown in 
Fig. 6. 

We now consider the moment characteristics of the burst amplitudes. For the DF (3) the 
average and rms values are related by the expression 

o#mA = V~'72--t, (i0) 

and so the problem is reduced to determining the dependence of m A on the level c. We assume 
that for any c~O a certain value of the amplitude A # reasonably close to the maximum is 
obtained with the same confidence coefficient ~. This assumption corresponds formally to the 
equation 

OA(A* - -  C) = ~, 

whence we obtain 

= ~ ' ~  kA~ o ]' (ii) 

where k A is the solution of the equation ~o(k A) = (i + ~)/2. Expression (ii) contains two 
quantities that have to be determined: the confidence coefficient C and the corresponding 
amplitude value A*. In the analysis of almost-normal stochastic processes it is customary 
to take the value of the process for C = 0.9973 as the maximum amplitude. An analysis of the 
DFs for realizations 1-7 shows that the values of u/o corresponding to C = 0.9973 vary in 
the interval 3.2-3.6. Assuming in expression (ii) that A*/o = 3.4, C = 0.9973 (here k A = 3) 
and making use of (I0), we obtain 

7 - -  E 3 ' ~ - = ~  ~ 3 �9 
(12) 

The results of measurements of the average and rms values of the burst amplitudes in 
Fig. 6 show that the variations of the quantities mA/o and OA/O with the level c are almost 
linear and are satisfactorily described by expressions (12). It must be borne in mind that 
the data of direct measurements of the parameters m A and o A in Fig. 6, were not used in de- 
riving expressions (12). 

Figure 6 shows the measured values of the correlation coefficient between the burst 
durations and amplitudes PTA = <(~ -- m~)(A-- mA)>/(OAOT). It is seen that PTA increases 
with the level c. The result is natural insofar as the shape of the bursts becomes more 
sharply defined at high levels, and it is reasonable to expect that PTA + 1 as c + A*/a. 
However, it appears impossible to establish the functional form of the dependence of the cor- 
relation coefficient on the level on the basis of the existing data. The high values ob- 
tained experimentally for the correlation coefficient PTA = 0.6-0.9 indicate the presence 
of an almost-linear statistical relationship between the burst durations and amplitudes (see 
also [3]). Consequently, long-duration bursts in the turbulent fluctuations of the flow 
velocity will generally have large amplitudes. 

On the whole, the reported experiments show that at the energy-carrying frequencies the 
characteristics of bursts in turbulent fluctuations of the flow velocity can be described 
by fairly simple universal laws over a wide range of Re T and other parameters of the flow. 
The relations connecting the average and rms values of the burst durations and amplitudes 
to the threshold level are found to be universal when the quantities o and I are used as 
typical intensity and time parameters. The quantitative description of all the experimental 
data requires only three empirical constants: ~, B, and A*, and the postulated empirical 
relations for c = 0 are in good agreement with the data of [3, 4]. This means that in de- 
veloped turbulence the laws governing the formation of bursts in the flow fluctuations at 
the energy-carrying frequencies are practically independent of the flow conditions or the 
turbulence Reynolds number, which in the reported experiments did not vary by more than a 

factor of 50. 

The author is deeply grateful to V. L. Zimont, on whose suggestion the present study 
was undertaken, and to Yu. M. Denisov for considerable assistance in writing the set of com- 

puter programs. 
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SPREADING OUT OF A VISCOUS LIQUID OVER A HORIZONTAL SURFACE 

G. I. Shapiro UDC 532.62 

The spreading out of a viscous liquid over the surface of a solid body plays an impor- 
tant role in a number of practical problems, for example, in the formation of coatings of sol- 
id bodies, in the motion of gas-- liquid mixtures and emulsions in capillaries, and in other 
cases [i]. The motion of a thin film of a viscous liquid over a horizontal surface is caused 
by the action of gravity and surface tension forces and has much in common with the motion 
of thin films over an inclined surface, which has been intensively studied for a number of 
years [2-4]~ The transition from an inclined plane to a horizontal one is not trivial, i.e., 
it does not reduce to the substitution into the final formulas of a slope angle equal to 
zero. The point is that motion over a horizontal surface is described even in the crudest 
approximation by a differential equation of higher order. 

The problem of the spreading out of a viscous liquid over a horizontal surface has been 
discussed in the two-dimensional formulation in [5], in which the approximate nonlinear equa- 
tion for the layer thickness h is obtained as a function of the coordinate x and the time t: 

ht = (g/3w)(h~hx)x" (1) 

Here ~ i s  the  k i n e m a t i c  v i s c o s i t y  c o e f f i c i e n t  and g i s  the  g r a v i t a t i o n a l  a c c e l e r a t i o n .  Un- 
f o r t u n a t e l y ,  the  e f f e c t  of s u r f a c e  t e n s i o n  has  i n  f a c t  n o t  been t aken  i n t o  a c c o u n t  in  [5 ] .  

In the  o p p o s i t e  l i m i t i n g  c a s e ,  in  which one can n e g l e c t  the  f o r c e  of  g r a v i t y  in  c o m p a r i -  
son wi th  the  s u r f a c e  t e n s i o n  f o r c e ,  the  e q u a t i o n  f o r  h (x ,  t )  has  been o b t a i n e d  i n  [6] ( a l s o  
only in the two-dimensional formulation): 

h t + (~/3pv)(h~hxxx) x - -  O, (2) 

where ~ is the surface tension coefficient and p is the density of the liquid. 

The three-dimensional problem of the motion of a viscous incompressible liquid over a 
horizontal plane is discussed in this paper with account taken of the gravity and surface 
tension forces. The slope of the free surface is assumed to be small, and the motion is as- 
sumed to be sufficiently slow (creeping) so that one can neglect the inertial forces in com- 
parison with the viscous ones. As will be shown, the Reynolds number does not necessarily 
have to be small. No restrictions are imposed on variations of the layer thickness h(x, y, t); 
in particular, h can vanish, as occurs upon the spreading out of a drop. 
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